Whether you’re considering upgrading your uninterruptible power system (UPS), investigating service options for an existing unit, or simply seeking to bolster your overall power protection proficiency, one thing is certain: knowledge is power. With that in mind, we’ve compiled five important details to add to your power system repertoire:
1. All UPS are not created equal. It is important to recognize that the three primary UPS topologies — standby, line-interactive and online —provide significant differences in performance and varying degrees of protection. A standby system, also referred to as an off-line or passive UPS, delivers the most basic level of security, making it best suited for less critical applications. While the low-cost units supply battery backup during a power outage, they do not buffer equipment against many common damaging power anomalies.
A line-interactive UPS system is designed to shield connected devices from five of the nine most common power problems, including under- and over- voltage conditions. Typically used to safeguard enterprise network and IT applications, a line-interactive UPS provides more protection than standby models, with better power conditioning and regulation that helps prolong battery life.
Finally, the online or double-conversion topology delivers continuous protection against all nine common power problems, supplying consistent power quality regardless of incoming instabilities. Online UPSs are the optimal choice for critical applications or those involving highly sensitive equipment, such as data centers, communications hubs and other mission-critical installations where continuous, clean power is a business-critical requirement.
2. A UPS won’t necessarily include power conditioning. While either device can offer various forms of power filtering, the primary distinction between the two is that a UPS system has a battery, while a power conditioner does not. In addition to providing battery backup, some UPSs also combine power filtering into a single unit; however, the UPS must be either line-interactive or online topology and include true sine wave output. However, if your UPS doesn’t incorporate the necessary level of power conditioning, it is possible to add a separate power conditioner to the unit.
3. No matter how well you care for your UPS, certain components will eventually fail. While some UPS systems may last 15 or more years, there are several principal components that are subject to failure far earlier; most notably, the batteries, fans and capacitors. The majority of UPS batteries have an expected lifespan of three to five years under ambient conditions, but can fail much faster in environments that exceed a temperature of 77°F, or where recurrent power problems cause them to cycle frequently. Fans have a typical lifespan of six to seven years, and most capacitors will last seven to 10 years before needing to be replaced. To avoid unexpected downtime or damage to critical equipment, make sure you understand the lifecycle and maintenance requirements of these key UPS components.
4. Regular preventive maintenance is essential. Routine preventive maintenance has been shown to be one of the most successful and cost-effective ways to ensure the longevity — and reliability — of your UPS system. This proactive maintenance approach monitors ongoing UPS health through regular checkups, helping to ensure that the system will continue to operate at peak performance. In addition to batteries, capacitors and fans, a UPS’s semi-conductors, wiring, resistors and breakers all require regular attention in order to achieve optimal performance and efficiency. Without scheduled preventive maintenance, there is no way to mitigate the possibility of part and component failures, leaving equipment vulnerable to downtime and premature failure.
5. Maximizing UPS efficiency can lower your energy costs. Did you know that even small boosts to UPS efficiency can result in thousands of dollars in savings? That’s because high-efficiency UPS models achieve more real power while lowering power and cooling requirements— an especially important factor considering utility costs are long-term, ongoing expenses. While actual savings depend on utility rates, the size of the UPS system and the load supported, increasing efficiency by as little as 1 percent can translate to tens of thousands of dollars in annual savings. And the Department of Energy estimates that a 15,000-square-foot data center operating at 100W/square foot would pocket $90,000 per year just by increasing the efficiency of its UPS from 90 to 95 percent.
While these key factors are intended to bolster your overall UPS system knowledge, we at Unified Power also understand that UPS’s can be complex devices.